Particular Solutions of the Confluent Hypergeometric Differential Equation by Using the Nabla Fractional Calculus Operator

نویسندگان

  • Resat Yilmazer
  • Mustafa Inç
  • Fairouz Tchier
  • Dumitru Baleanu
چکیده

Resat Yilmazer 1, Mustafa Inc 1,*, Fairouz Tchier 2 and Dumitru Baleanu 3,4 1 Department of Mathematics, Science Faculty, Fırat University, Elazığ 23119, Turkey; [email protected] 2 Department of Mathematics, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; [email protected] 3 Department of Mathematics and Computer Science, Çankaya University, Ankara 06530, Turkey; [email protected] 4 Institute of Space Sciences, P.O. Box MG-23, Magurele-Bucharest RO-76911, Romania * Correspondence: [email protected]; Tel.: +90-424-237-0000 (ext. 3551); Fax: +90-424-233-0062

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Airy equation with memory involvement via Liouville differential operator

In this work, a non-integer order Airy equation involving Liouville differential operator is considered. Proposing an undetermined integral solution to the left fractional Airy differential equation, we utilize some basic fractional calculus tools to clarify the closed form. A similar suggestion to the right FADE, converts it into an equation in the Laplace domain. An illustration t...

متن کامل

Matrix Mittag-Leffler functions of fractional nabla calculus

In this article, we propose the definition of one parameter matrix Mittag-Leffler functions of fractional nabla calculus and present three different algorithms to construct them. Examples are provided to illustrate the applicability of suggested algorithms.

متن کامل

Solution of Volterra-type integro-differential equations with a generalized Lauricella confluent hypergeometric function in the kernels

The object of this paper is to solve a fractional integro-differential equation involving a generalized Lauricella confluent hypergeometric function in several complex variables and the free term contains a continuous function f (τ). The method is based on certain properties of fractional calculus and the classical Laplace transform. A Cauchy-type problem involving the Caputo fractional derivat...

متن کامل

Gronwall's inequality on discrete fractional calculus

We introduce discrete fractional sum equations and inequalities. We obtain the equivalence of an initial value problem for a discrete fractional equation and a discrete fractional sum equation. Then we give an explicit solution to the linear discrete fractional sum equation. This allows us to state and prove an analogue of Gronwall's inequality on discrete fractional calculus. We employ a nabla...

متن کامل

Solution of Differential Equations with Polynomial Coefficients with the Aid of an Analytic Continuation of Laplace Transform

In a series of papers, we discussed the solution of Laplace’s differential equation (DE) by using fractional calculus, operational calculus in the framework of distribution theory, and Laplace transform. The solutions of Kummer’s DE, which are expressed by the confluent hypergeometric functions, are obtained with the aid of the analytic continuation (AC) of Riemann–Liouville fractional derivati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016